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Abstract Population projections are judged primarily by their accuracy. The most

commonly used measure for the precision component of accuracy is the mean

absolute percent error (MAPE). Recently, the MAPE has been criticized for over-

stating forecast error and other error measures have been proposed. This study

compares the MAPE with two alternative measures of forecast error, the Median

APE and an M-estimator. In addition, the paper also investigates forecast bias. The

analysis extends previous studies of forecast error by examining a wide range of

trend extrapolation techniques using a dataset that spans a century for a large sample

of counties in the US. The main objective is to determine whether the choice of

summary measure of error makes a difference from a practitioner’s standpoint. The

paper finds that the MAPE indeed produces error values that exceed the robust

measures. However, except for situations where extreme outliers rendered the

MAPE meaningless, and which are rare in real world applications, there was not a

single instance where using an alternative summary measure of error would have led

to a fundamentally different evaluation of the projections. Moreover, where dif-

ferences existed, it was not always clear that the values and patterns provided by the

robust measures were necessarily more correct than those obtained with the MAPE.

While research into refinements and alternatives to the MAPE and mean algebraic

percent error are worthwhile, consideration of additional evaluation procedures that

go beyond a single criterion might provide more benefits to producers and users of

population forecasts.

Keywords Forecast accuracy � MAPE � Error measures � Population projections

S. Rayer (&)

Bureau of Economic and Business Research, University of Florida, 221 Matherly Hall, P.O. Box

117145, Gainesville, FL 32611-7145, USA

e-mail: stefanr@bebr.ufl.edu

123

Popul Res Policy Rev (2007) 26:163–184

DOI 10.1007/s11113-007-9030-0



Introduction

Population projections are first and foremost judged by their accuracy (Yokum &

Armstrong, 1995). This study focuses on the two main components of forecast

accuracy, precision and bias.1 Examinations of projection precision have tradition-

ally used the mean absolute percent error (MAPE) as the summary measure of error

of choice (Isserman, 1977; Murdock, Leistritz, Hamm, Hwang, & Parpia, 1984;

Smith, 1987; Smith & Shahidullah, 1995; Smith & Sincich, 1988, 1990, 1991, 1992;

Tayman, Schafer, & Carter, 1998; White, 1954). In recent years, the ubiquitous

use of the MAPE has been challenged. In particular, it has been argued that

the MAPE tends to overstate forecast error, and that other measures are more suited

and should be used instead to evaluate the precision of population projections

(Coleman & Swanson, 2004; Swanson, Tayman, & Barr, 2000; Tayman &

Swanson, 1999).

Many of the studies that have evaluated projection errors did so using a limited

set of data both with regard to space and time (see, e.g., Isserman, 1977; Murdock

et al., 1984; Smith, 1987; Smith & Sincich, 1991; Tayman & Swanson, 1999;

Tayman et al., 1998), or were based on simulations (Coleman & Swanson, 2004). In

particular, there exists a paucity of sub-state projection evaluations that examine

more than a few decades of data, and which are nationally representative. This is

unfortunate because small area population projections are most frequently used for

actual planning purposes. Moreover, in order to make generalizations about the

characteristics of the various summary measures of error it is advisable to have

sample data that span many decades and cover a large number of geographic areas.

The present study attempts to fill this gap by analyzing a range of commonly applied

trend extrapolation techniques using population data from every decennial census

from 1900 to 2000 for all counties in the continental US for which comparable data

are available.

The main objective of this study is to determine whether the choice of summary

measure of forecast error makes a difference from a practitioner’s standpoint.

Specifically, the paper examines whether using a robust measure of forecast error

would lead to different conclusions about the precision and bias of the projections

vis-à-vis using the MAPE/mean algebraic percent error (MALPE). For that purpose,

the analysis compares results obtained with the most popular summary measure of

forecast precision, the MAPE, with robust measures such as the Median APE and

an M-Estimator, Tukey’s biweight. In addition to the focus on precision, the paper

also examines projection bias, by comparing results obtained with the most

commonly used summary measure—MALPE—to more robust alternative mea-

sures. The study starts with investigating the various error measures in the

aggregate. This is followed by a more detailed analysis of different base period

lengths and county growth characteristics. Using 100 years of data, almost 2,500

1 Demographic convention considers projections to be conditional statements about the future, which

reflect the outcome of particular assumptions, while forecasts are unconditional statements that reflect

what the analyst believes most likely to happen in the future (Smith, Tayman, & Swanson, 2001). The

terms projection and forecast are used interchangeably in this article, because most people consider

projections to be forecasts, whatever the intention of the producer.
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counties, ten trend extrapolation techniques, and three error measures for assessing

forecast precision and bias, the paper extends previous projection evaluations and

helps both users and practitioners of population projections make better informed

decisions.

Data and techniques

Throughout the twentieth century many counties in the US experienced changes to

their boundaries that make a comparison of population figures from one census to

the next problematic. In order to preserve comparability, the analysis was limited to

those counties that did not experience significant boundary changes over the study

period. To determine which of the changes were significant, this study largely

follows Forstall, who identified the census date since which each ‘‘county has had

no significant territorial change, that is, a boundary change large enough to have a

significant effect on the county’s population as of the preceding census’’ (Forstall,

1996, p. 8). This resulted in a total number of 2,482 counties that did not experience

significant boundary changes between 1900 and 2000, which amounts to 79.0% of

all the counties in Census 2000. In a companion study, it has been shown that this

restricted sample can be considered to be representative of the nation at large

(Rayer, 2004).

The terminology used follows Smith et al. (2001): base year refers to the year of

the earliest data used to make a projection; launch year refers to the year of the most

recent data used to make a projection; target year refers to the year for which a

population is projected; base period refers to the interval between the base year and

the launch year of the projection; and projection horizon refers to the interval

between the launch year and the target year of a projection.

Covering census data for the entire twentieth century, the analysis involves 125

projection horizon/base period combinations spanning a range between 10 and

50 years. Specifically, the analysis includes 35 10-year, 30 20-year, 25 30-year, 20

40-year, and 15 50-year projection horizons and base periods. The first target year

for which projections were made was 1920, a 10-year projection with a 1910 launch

year and a 1900–1910 base period. In addition, three projections were made for

1930, 6 for 1940, 10 for 1950, 15 for 1960, 19 for 1970, 22 for 1980, 24 for 1990,

and 25 for 2000.

For each of these 125 projection horizon/base period combinations, a total of ten

projection techniques were applied, including seven primary techniques and three

averages. The primary techniques include linear (LIN), modified linear (MLN),

share-of-growth (SHR), shift-share (SFT), exponential (EXP), constant-share

(COS), and constant (CON). In addition, the study calculated three average

projections comprising all seven trend extrapolation techniques (AV7), excluding

the highest and the lowest projection (AV5), and excluding the two highest and two

lowest projections (AV3). The seven primary techniques were calculated as follows:

LIN: In the LIN extrapolation technique, it is assumed that the population will

increase (decrease) by the same number of persons in each future decade as the

average per decade increase (decrease) observed during the base period:
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Pt ¼ Pl þ x=y Pl � Pbð Þ;

where Pt is the population in the target year, Pl the population in the launch year, Pb

the population in the base year, x the number of years in the projection horizon, and

y is the number of years in the base period.

MLN: The MLN extrapolation technique initially equals the LIN method but in

addition distributes the difference between the sum of the linear county projections

and the independent national projection proportionally by population size at the

launch year:

Pit ¼ LINþ Pil=Pjl Pjt � RLIN
� �

;

where i represents the county, j the nation, and LIN is the previously calculated

linear county projection for the target year.

The MLN method, as well as the SHR, SFT, and COS techniques, require an

independent national projection for the target year population. Although population

projections for the nation have been available for quite a long time (see, e.g.,

Bonynge, 1852; Pritchett, 1891; Whelpton, 1928), there exists no satisfactory set

that covers all the target years used in this study. Instead, a new set was produced by

applying the LIN and EXP trend extrapolation techniques to the national population,

using the appropriate base period and target year. For example, county projections

for the year 2000 with a 1970–1990 base period were calculated using a national

projection for 2000 derived from extrapolating population change during the 1970–

1990 base period. To flatten out the discrepancies between the LIN and EXP

methods, an average of the two techniques was then calculated and used for the four

ratio methods.2

SHR: In the SHR technique, it is assumed that the county’s share of population

growth will be the same over the projection horizon as it was during the base period:

Pit ¼ Pil þ Pil � Pibð Þ= Pjl � Pjb

� �� �
ðPjt � PjlÞ:

SFT: In the SFT technique, it is assumed that the average per decade change in

each county’s share of the national population observed during the base period will

continue throughout the projection horizon:

Pit ¼ Pjt Pil=Pjl þ x=yð Þ Pil=Pjl � Pib=Pjb

� �� �
:

EXP: In the EXP technique, it is assumed that the population will grow (decline)

by the same rate in each future decade as it did, per decade, during the base period:

2 The ratio methods were also run using actual census data for the target years instead of the inputs from

the projection averages. The results were very similar, which shows that the projections made with the

ratio techniques are not very sensitive to the choice of a national projection. Because regular ex ante ratio

method population projections do not have actual census data for the nation available for the target years

when the projections are made, and require an independent national projection, the ex post analysis

presented here likewise uses projected rather than census values.
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Pt ¼ Pl erx; r ¼ ln Pl=Pbð Þ
y

;

where e is the base of the natural logarithm and ln is the natural logarithm.

COS: In the COS technique, it is assumed that the county’s share of the national

population will be the same in the target year as it was in the launch year:

Pit ¼ Pil=Pjl

� �
Pjt:

CON: In the CON technique, it is assumed that the county population in the

target year is the same as in the launch year:

Pt ¼ Pl:

Summary measures of forecast accuracy

This analysis focuses on the precision of population projections and on their bias.

According to the National Research Council (1980), any summary measure of error

should meet the criteria of measurement validity, reliability, ease of interpretation,

clarity of presentation, and support of statistical evaluation. In addition, sensitivity

and relationship to decision making can be important considerations (Armstrong &

Collopy, 1992). With respect to precision, the most popular error measure in

population forecasting is the mean absolute percent error or MAPE (see, e.g.,

Ahlburg, 1995; Isserman, 1977; Smith, 1987; Smith & Sincich, 1988, 1990, 1992).

It is calculated as follows:

MAPE ¼ RjPEtj
n

; PEt ¼ ½ðFt � AtÞ=At� � 100;

where PE represents the percent error, t the target year, F the population forecast, A
the actual population, and n is the number of areas.

Projections that are completely precise result in a MAPE of zero. The MAPE has

no upper limit—the larger the MAPE, the lower the precision of the projections. The

MAPE is popular, because it meets most of the above described desired criteria,

although it has been criticized particularly with respect to its reliability and validity

(Coleman & Swanson, 2004; Swanson et al., 2000; Tayman & Swanson, 1999).

Being an arithmetic mean, the MAPE is susceptible to outliers, and because the

average percent errors of population projections are right-skewed, it has been argued

that it tends to overstate forecast error.

To overcome the problem with the effect of outliers, the Median APE is

sometimes used as a robust alternative measure of error (Armstrong & Collopy,

1992; Tayman, 1996). The Median APE represents the error that falls in the middle

of the distribution: half of the absolute percent errors are larger and half are smaller.

The median, being essentially an extreme trimmed mean, is not influenced by the
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presence of a few extreme values. However, it neglects some of the information

contained in the sample and responds to the presence of small errors in the

centermost observations that may result from grouping (Rosenberger & Gasko,

1983, p. 302). Error measures based on a median rather than a mean are therefore

better suitable for large sample data.

Another alternative was proposed by Tayman, Swanson, and Barr (1999) and

Swanson et al. (2000). They advance a method based on a modified Box-Cox

transformation, from which they calculate an average measure of error termed

MAPE-R. The transformation works by creating a symmetrical distribution of the

APEs from which a summary measure of accuracy can be calculated that reduces

the impact of outliers. MAPE-R has been applied to evaluate forecast errors in state

projections by Census Bureau staff (Campbell, 2002). Using MAPE, the ratio of

MAPE to Median, and MAPE-R, Campbell found that MAPE overstated forecast

errors and that ‘‘a different conclusion would have been drawn if the original error

distribution were not corrected for skewness and asymmetry’’ (2002, p. 9).

However, the differences between the three error measures were not that great.

While the MAPE did produce the largest projection errors throughout, the Median

APE and MAPE-R were rather similar, and using the median-based measure would

have led to essentially the same conclusions as with MAPE-R.

A final summary measure of error considered here refers to the minimization (M)

estimators. Tayman and Swanson (1999) advocate using M-estimators as robust

measures of forecast accuracy. M-estimators assign different weights to values

depending on their distance from the center of the distribution, thus minimizing the

impact of outliers. Four M-Estimators were introduced by Goodall (1983): Huber’s

H, redescending Hampel, Andrews’ waves, and Tukey’s biweight. Using differing

tuning constants, the M-estimators vary by their resistance to outliers and their

efficiency for heavy-tailed distribution, with Huber’s H being the least resistant and

Andrews’ waves and Tukey’s biweight being the most resistant. For a more detailed

discussion of the application of M-estimators in the context of population forecasts

see Tayman and Swanson (1999). Hoaglin, Mosteller, and Tukey (1983) provide the

theoretical background.

Using ex post facto comparisons of 1990 population projections and 1990 census

counts for seven states at the county level, Tayman and Swanson (1999) found

MAPE to overstate forecast error between 20 and 100%, with the M-estimators,

especially Andrews’ waves and Tukey’s biweight having a higher level of validity.

However, while M-estimators may have higher validity than MAPE, they lack the

intuitive and interpretative qualities of the latter, which makes their widespread

adoption problematic.

For the purpose of this study, three summary measures of forecast precision will

be compared: MAPE, Median APE, and Tukey’s biweight.3 Most of the literature

regarding error measures for population projections deals with precision. Investi-

gations of forecast bias are less frequent, and they are generally limited to the

3 Although there are some differences between the four M-estimators, they are not great. Tayman and

Swanson (1999), following Goodall (1983), recommend the use of Tukey’s biweight, because it is the

most popular and robust M-estimator.
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application of the mean algebraic percent error or MALPE (see, e.g., Smith, 1987;

Smith & Shahidullah, 1995; Smith & Sincich, 1988, 1990; Tayman, 1996). The

MALPE can be calculated analogously to the MAPE, though using algebraic rather

than absolute percent errors. Negative values on the MALPE indicate a tendency for

projections to be too low, while positive values indicate a tendency for projections

to be too high. There has been very little research devoted to refinements of the

MALPE along the lines of the robust alternatives to the MAPE. When bias is

analyzed in more detail, it is generally through the application of another indicator

for bias, such as the proportion of positive errors, rather than a refined version of the

MALPE (see, e.g., Smith & Sincich, 1992). To investigate whether the findings

obtained from the comparison of the various summary measures of forecast

precision are also applicable to an analysis of forecast bias, the study will conclude

with a discussion of the MALPE vis-à-vis potential alternative measures.

Analysis

The analysis starts by examining the three summary measures of error for the ten

trend extrapolation methods in the aggregate using the entire century of county data.

Table 1 reports forecast precision for projection horizons ranging from 10 to

50 years in addition to the overall average. Within each horizon, the data represent

the average of all target years and base period lengths. For each projection horizon

there are three rows of data representing the three chosen summary measures of

forecast precision: MAPE, Median APE, and Tukey’s biweight.

The data in Table 1 lend initial support to the notion that MAPE overstates

forecast error (Swanson et al., 2000). For every technique and horizon length, the

MAPEs are consistently higher than either the Median APEs or the M-estimator. For

most techniques the MAPE exceeds the Median APE and the M-Estimator by about

30–40%. These results are largely in line with what Tayman et al. (1999) found by

looking at the MAPE to Tukey-M ratio for counties and census tracts from a select

number of states for 1990. The differences between the MAPE and the robust

measures are greatest for EXP, where even for the shortest projection horizon the

MAPE exceeds both the Median APE and the M-estimator by more than 50%, and

smallest for SFT, COS, and CON, ranging from 10 to 37%, depending on the length

of the horizon. For LIN, MLN, SHR, AV5, and AV3 the MAPE to Median ratio

stays fairly constant between 30 and 43%, irrespective of horizon length.

While the MAPE exceeds the Median APE and the M-estimator for every

projection technique and projection horizon, the differences are most pronounced

for EXP—and AV7 by extension—for which the MAPE takes on truly enormous

values for the longer horizons. This highlights a core problem with the MAPE,

which is bounded on the left but unbounded on the right. In general, the amount by

which the MAPE exceeds the robust measures depends on the degree of asymmetry

in the error distribution. Because population projections are usually not allowed to

go negative, the maximum error for under-projecting a population is fixed at 100%,

whereas there is no upper limit for projections that are too high. The EXP method is

particularly prone to produce extreme values on the high end, especially for longer
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horizons, which is why we see the large differences between the MAPE and the

robust measures for this technique. This can be problematic for areas with small

population bases that sometimes experience rapid population changes over short

periods of time. For example, the population of Crane County, Texas, increased

from 37 persons in 1920 to 2,221 persons in 1930, a growth of about 6,000% for the

decade. Basing any projection on such an increase will lead to questionable results

at best, but when used with the EXP method and for a long projection horizon, it

should come as no surprise that astronomical projection values, and consequently

absolute percent errors, are the outcome. In practice, nobody should produce a

projection knowing these input parameters without making reasonable adjustments.

While clearly an extreme case, it nicely illustrates the vulnerability of mean-based

summary measures of error to outliers.

The two robust measures of forecast precision—Median APE and Tukey’s

biweight—provide essentially identical results. For most projection horizons and

techniques the Median APE exceeds the biweight by a small amount, with the

greatest differences coming from EXP, which, as demonstrated above, is

particularly susceptible to extreme forecast errors. But even here the differences

are not great, amounting to less than 10% for each horizon. These results are echoed

by the analysis of forecast bias (data not shown).

As demonstrated in Table 1, the MAPE consistently reported the highest forecast

errors of the three measures. But would have using the MAPE rather than a robust

measure of error led to different conclusions regarding the precision of the

projections, apart from the overall level of reported error? For most techniques, the

results are rather similar with respect to the three error measures. The clear

exception, however, are the projections obtained with the EXP method. Here, the

MAPE takes on truly enormous values, especially for horizons exceeding 20 years.

This is a function of a relatively small number of counties, usually with very small

populations, which experienced rapid increases in population at some point in time,

mostly in the early decades of the twentieth century. The above given example of

Crane County, Texas, is a case in point. Having just a few of these obvious outliers

in the analysis greatly affects any mean-based summary measure of error, and the

outcome can clearly be seen in Table 1. There are some other differences in

interpretation of the results between the MAPE on the one hand, and the two robust

measures of error on the other hand—such as the MAPE identifying CON as the

primary projection technique with the greatest precision for the 20-year projections

compared to MLN using the robust measures—but overall the three summary

measures of forecast error lead to similar conclusions, apart from the overall level of

precision reported.

Having compared the three error measures in the aggregate, the analysis turns

now to a more disaggregate level. First, different base period lengths within each

projection horizon are investigated. This is followed by an analysis of county

growth patterns. Tables 2–4 display the forecast error for each projection horizon

differentiated by the length of the base period, ranging from 10 to 50 years. Table 2

shows the MAPEs, Table 3 the Median APEs, and Table 4 results obtained with

Tukey’s biweight.
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The data in Table 2 make clear that the length of the base period has only a minor

impact on the precision of the projections for most techniques, using the MAPE as

summary measure of error.4 The projections produced with the EXP technique form

an exception. Here, just lengthening the base period from 10 to 20 years results in

significantly enhanced precision for all projection horizons, with the improvement

most pronounced for the longer horizons. However, even using base periods of up to

50 years still produces projections with the lowest precision of any technique for the

40 and 50-year horizons. AV7, which includes all seven primary projection

techniques, and which is heavily influenced by the extreme outliers associated with

EXP, displays a similar dynamic. For all other methods, differences in forecast

precision due to varying base period lengths within each projection horizon are

Table 2 MAPE by projection horizon, base period, and projection technique

N Horizon Base LIN MLN SHR SFT EXP COS CON AV7 AV5 AV3

9 10 10 12.1 12.0 12.5 14.3 16.9 14.9 11.7 11.6 11.4 12.0

8 10 20 10.5 10.5 10.9 13.0 11.7 14.3 11.7 10.1 10.2 10.4

7 10 30 10.5 10.4 10.9 13.7 11.8 13.9 11.7 10.2 10.2 10.3

6 10 40 10.8 10.7 11.2 14.7 11.6 14.2 11.7 10.5 10.4 10.6

5 10 50 11.0 10.8 11.5 16.5 11.7 13.4 11.7 10.7 10.6 10.7

8 20 10 21.5 21.5 23.0 29.2 104.8 28.6 19.7 30.7 20.2 21.3

7 20 20 19.7 19.7 21.1 28.2 27.2 27.8 19.7 19.2 18.9 19.4

6 20 30 20.1 20.1 21.6 30.3 27.4 28.0 19.7 19.9 19.3 19.8

5 20 40 20.5 20.3 21.9 31.9 24.9 27.3 19.7 20.0 19.7 20.1

4 20 50 19.7 19.3 21.2 34.0 23.8 24.8 19.7 19.3 18.9 19.2

7 30 10 33.2 33.1 36.5 49.0 4,731‘.2 44.3 26.8 699.9 31.1 32.7

6 30 20 31.0 31.0 34.0 46.9 79.7 43.8 26.8 35.0 29.5 30.5

5 30 30 31.0 31.0 34.0 48.3 70.7 42.3 26.8 34.3 29.8 30.5

4 30 40 30.1 30.0 32.9 48.7 49.7 39.6 26.8 30.9 29.1 29.6

3 30 50 28.7 28.1 31.9 51.6 43.8 35.6 26.8 29.1 27.7 28.1

6 40 10 44.9 45.3 50.8 68.0 491,359.2 63.6 33.5 70,226.8 43.1 44.9

5 40 20 40.7 41.3 45.5 62.0 560.2 60.1 33.5 111.0 39.6 40.6

4 40 30 39.2 39.8 43.9 61.9 386.0 56.7 33.5 85.9 38.7 39.2

3 40 40 37.5 37.9 42.1 62.1 131.2 52.5 33.5 48.6 37.2 37.6

2 40 50 37.4 37.6 42.8 65.3 97.1 50.6 33.5 43.8 37.3 37.5

5 50 10 56.5 57.7 65.1 85.9 45,756,386.3 79.7 39.5 6,536,668.7 56.0 57.5

4 50 20 49.5 51.0 56.7 76.3 9,278.7 74.6 39.5 1,364.3 49.8 50.5

3 50 30 48.1 49.6 55.4 77.5 3,756.4 71.6 39.5 575.2 49.1 49.3

2 50 40 47.2 48.9 54.3 76.3 611.9 69.2 39.5 125.8 48.5 48.5

1 50 50 46.9 48.2 55.3 79.5 374.2 64.9 39.5 91.5 48.5 48.3

4 Because CON holds the population constant at the launch year value there are no differences in the

error measures among the five base periods. COS holds the county’s share of the national population

constant at the launch year’s value, but different base periods come into play in the form of the national

projections used in their calculation.
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insignificant compared to the differences between the projection horizons.

Extending the base period from 10 to 20 years yields some improvement in

precision, with mixed results thereafter.

Table 3 is structured analogously, showing the Median APEs by projection

horizon, base period length, and projection technique. In contrast to the results

obtained with the MAPE, EXP and AV7 now reveal very competitive results vis-à-

vis the other techniques. Once again, the length of the base period has only a minor

impact on precision, though for most methods, and especially for longer horizons,

some improvement is apparent when the base period is lengthened from 10 to

20 years. In accordance to the aggregate results shown in Table 1, using the median

rather than the mean generally reduces forecast error by about 30–40%. However,

beyond the overall level of precision, and apart from the suppression of the impact

of outliers, which manifests itself most clearly in the EXP method and AV7, the two

error measures lead to similar conclusions. The same is true when using the M-

estimator (Table 4), which once more provides results very much in line with the

median. Results for bias are largely comparable (data not shown).

Table 3 Median APE by projection horizon, base period, and projection technique

N Horizon Base LIN MLN SHR SFT EXP COS CON AV7 AV5 AV3

9 10 10 8.6 8.5 8.9 10.4 8.8 12.6 8.9 7.8 8.2 8.5

8 10 20 7.7 7.7 8.0 9.8 7.8 12.1 8.9 7.4 7.5 7.6

7 10 30 7.8 7.7 8.1 10.6 8.0 11.7 8.9 7.5 7.5 7.7

6 10 40 8.2 8.1 8.5 11.6 8.2 12.1 8.9 7.9 7.9 8.1

5 10 50 8.4 8.3 8.8 13.0 8.5 11.4 8.9 8.1 8.1 8.3

8 20 10 15.7 15.6 16.7 22.0 16.4 24.5 15.8 14.1 14.7 15.5

7 20 20 14.6 14.4 15.7 22.0 15.1 23.6 15.8 13.7 14.0 14.4

6 20 30 15.3 14.9 16.3 23.9 15.4 23.4 15.8 14.5 14.6 15.0

5 20 40 15.8 15.6 16.9 25.6 15.9 22.8 15.8 15.3 15.2 15.5

4 20 50 15.4 14.8 16.5 27.0 15.4 20.5 15.8 14.7 14.5 14.9

7 30 10 24.7 24.2 26.9 39.1 25.3 37.4 22.4 22.0 22.9 24.1

6 30 20 23.5 23.0 25.7 39.2 23.9 36.2 22.4 21.9 22.2 23.0

5 30 30 24.4 23.6 26.3 41.1 24.3 34.6 22.4 22.7 23.0 23.7

4 30 40 23.9 23.3 25.8 42.1 23.8 32.3 22.4 22.6 22.8 23.2

3 30 50 23.6 22.4 25.8 46.0 23.6 28.9 22.4 22.5 22.4 22.9

6 40 10 33.3 32.8 37.2 59.1 34.1 51.5 28.7 29.6 31.4 32.5

5 40 20 31.0 30.2 34.4 55.1 31.3 47.7 28.7 28.5 29.3 30.1

4 40 30 30.4 29.9 33.3 54.5 30.8 44.1 28.7 28.3 29.1 29.7

3 40 40 30.0 29.0 33.2 57.2 30.7 40.8 28.7 28.5 28.7 29.1

2 40 50 30.5 29.1 33.7 63.0 31.6 39.5 28.7 28.7 29.0 29.4

5 50 10 40.7 40.0 46.0 74.6 42.3 61.1 34.1 36.2 38.4 39.8

4 50 20 36.4 35.9 40.7 66.9 37.2 55.9 34.1 33.7 34.7 35.5

3 50 30 36.3 36.1 40.7 71.2 37.7 53.0 34.1 34.0 35.1 35.9

2 50 40 36.0 36.0 40.8 70.6 38.3 51.6 34.1 34.8 35.2 35.8

1 50 50 36.8 35.6 42.2 76.6 39.3 48.2 34.1 35.1 35.4 35.9
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Following the comparison of the three error measures in the aggregate (Table 1),

and by base period (Tables 2, 3, 4), the analysis continues by investigating these

measures by county characteristics. The attributes most commonly examined for

this purpose include population size and the rate of population growth or decline,

which have been found to be important and consistent determinants of projection

accuracy (Isserman, 1977; Murdock et al., 1984; Smith, 1987; Smith & Sincich,

1988; Tayman, 1996; Tayman et al., 1998; White, 1954). As a general rule,

projections made for larger places tend to be more accurate than those for smaller

places, and projections made for slow to moderately growing places tend to be more

accurate than those for fast growing and declining places. To conserve space, only

results by county growth rate are presented here. The results by county size were

very similar with respect to the performance of the three summary measures of

error.

As discussed above, the length of the base period had only a minor impact on

forecast precision. Lengthening the base period from 10 to 20 years resulted in a

modest improvement in precision, with very limited gains thereafter. The remainder

Table 4 Tukey’s biweight by projection horizon, base period, and projection technique

N Horizon Base LIN MLN SHR SFT EXP COS CON AV7 AV5 AV3

9 10 10 8.3 8.2 8.6 10.0 8.4 12.4 8.8 7.6 7.9 8.2

8 10 20 7.5 7.5 7.8 9.6 7.6 12.0 8.8 7.2 7.3 7.4

7 10 30 7.6 7.5 7.9 10.4 7.7 11.7 8.8 7.3 7.4 7.5

6 10 40 8.0 7.9 8.3 11.4 8.0 12.1 8.8 7.7 7.8 7.9

5 10 50 8.4 8.1 8.7 12.9 8.3 11.4 8.8 8.1 8.0 8.2

8 20 10 15.3 15.1 16.3 21.6 15.7 24.5 15.7 13.8 14.4 15.1

7 20 20 14.4 14.2 15.4 21.9 14.5 23.7 15.7 13.5 13.7 14.2

6 20 30 15.0 14.6 15.9 23.9 14.8 23.7 15.7 14.2 14.2 14.6

5 20 40 15.6 15.3 16.5 25.4 15.4 23.0 15.7 15.0 15.0 15.3

4 20 50 15.3 14.7 16.4 27.1 14.9 20.7 15.7 14.6 14.4 14.7

7 30 10 24.2 23.6 26.3 39.9 24.1 37.2 22.6 21.7 22.7 23.7

6 30 20 23.2 22.5 25.2 40.0 22.8 36.1 22.6 21.5 22.0 22.6

5 30 30 23.9 23.3 25.9 42.5 23.2 34.4 22.6 22.4 22.7 23.2

4 30 40 23.6 23.1 25.5 43.8 23.2 32.1 22.6 22.4 22.6 23.1

3 30 50 23.5 22.1 25.8 48.3 22.8 28.7 22.6 22.1 22.1 22.5

6 40 10 33.2 32.5 37.5 57.3 31.9 50.9 29.1 28.7 30.9 32.4

5 40 20 30.4 29.8 33.9 53.6 29.2 46.9 29.1 27.3 28.7 29.5

4 40 30 29.7 29.1 32.9 54.0 29.0 43.4 29.1 27.5 28.4 29.0

3 40 40 29.7 28.8 32.9 56.8 29.4 39.6 29.1 28.0 28.5 28.9

2 40 50 30.3 28.9 34.1 61.0 30.1 38.3 29.1 28.3 28.9 29.3

5 50 10 40.4 39.6 45.5 66.7 38.5 60.1 34.6 34.2 37.0 39.1

4 50 20 35.7 34.9 39.7 61.6 34.1 54.5 34.6 32.1 33.5 34.6

3 50 30 35.8 35.0 40.0 64.6 35.0 50.5 34.6 32.9 34.3 34.9

2 50 40 35.7 35.0 40.0 65.4 35.5 49.0 34.6 33.6 34.3 34.9

1 50 50 36.2 34.3 41.1 70.4 36.2 45.4 34.6 33.5 34.4 34.9
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of the analysis will therefore be restricted to projections using 20-year base periods.

Furthermore, to facilitate exposition, only five of the ten techniques are presented

(LIN, SFT, EXP, CON, and AV7) and the discussion will focus on 10- and 20-year

projection horizons, which are most commonly used in practice.

The data in Fig. 1a–c show projection precision by population growth rate over

the base period for the three error measures. Ten categories of population growth

(and decline) are investigated: less than �15, �15 to �10, �10 to �5, �5 to 0, 0–5,

5–10, 10–15, 15–25, 25–50%, and more than 50% growth per decade over the base

period. As can be seen in Fig. 1a, according to the MAPE, each of the five

projection techniques exhibits a u-shaped relationship between forecast precision

and rate of population change. Precision is lowest for counties that had declining or

rapidly growing populations over the base period, and highest for counties with little

to no population change. The five projection techniques differ with respect to

whether growing or declining populations produce larger forecast errors. SFT

performs worst for counties with rapidly declining populations, a category for which

LIN also shows large errors. In contrast, EXP performs poorly for rapidly growing

counties, but has among the lowest errors for counties that declined in population

over the base period. For every projection technique, longer projection horizons are

associated with larger forecast errors.

Figures 1b, c are structured analogously but measured using the Median APE and

the M-estimator. Overall, the three measures are very similar, all showing the u-

shaped relationship between forecast precision and population change, in addition to

highlighting similar patterns at both ends of the growth spectrum. Differences exist

with respect to the level of precision, which is generally lowest using the MAPE and

highest using the M-estimator. Results obtained with the Median APE fall in

between, though they are closer to the M-estimator than to the MAPE. In fact, for

most methods, horizons, and growth categories, Fig. 1b, c are virtually identical. For

the longer projection horizons the MAPE tends to diverge further from the two

robust measures, but the overall relationship between forecast precision and base

period population change remains essentially the same (data not shown).

Because both robust summary measures of error exhibited very similar results

throughout the study, the following analysis of bias will be limited to a comparison

between the MALPE and the Median ALPE, substituting an additional error

measure with a somewhat different focus, percent positive, for the M-estimator. It

can be argued which measure is preferable, and other robust measures such as

MAPE-R could also be investigated, but for practical purposes the results are too

similar to warrant a focus on the small differences where they exist.5 The median-

based measure was chosen because it is well known, easy to calculate, and easy to

interpret. There might be situations where using a median-based summary measure

of error are not advised, e.g., for small samples, but these do not apply here.

Figures 2a–c display data for the same five projection techniques, base periods,

projection horizons, and growth categories as were shown in Fig. 1a–c, but this time

focusing on bias. Figure 2a presents results obtained with the MALPE. One can see

that SFT and LIN are most biased for fast declining counties, and EXP is most

5 Tayman et al. (1999) also found results obtained with MAPE-R to be very similar to Tukey’s biweight.
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Fig. 1 a MAPE by population growth, 20-year base period, 10 and 20 years projection (<�15, �15 to
�10, �10 to �5, �5 to 0, 0–5, 5–10, 10–15, 15–25, 25–50, >50%). b Median APE by population growth,
20-year base period, 10 and 20 years projection (<�15, �15 to �10, �10 to �5, �5 to 0, 0–5, 5–10, 10–
15, 15–25, 25–50, >50%). c Tukey’s Biweight by Population Growth, 20-year base period, 10 and
20 years projection (<�15, �15 to �10, �10 to �5, �5 to 0, 0–5, 5–10, 10–15, 15–25, 25–50, >50%)
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Fig. 2 a MALPE by population growth, 20-year base period, 10 and 20 years projection (<�15, �15 to
�10, �10 to �5, �5 to 0, 0–5, 5–10, 10–15, 15–25, 25–50, >50%). b Median ALPE by population
growth, 20-year base period, 10 and 20 years projection (<�15, �15 to �10, �10 to �5, �5 to 0, 0–5, 5–
10, 10–15, 15–25, 25–50, >50%). c Percent positive by population growth, 20-year base period, 10 and
20 years projection (<�15, �15 to �10, �10 to �5, �5 to 0, 0–5, 5–10, 10–15, 15–25, 25–50, >50%)
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biased for fast growing counties. This mirrors the results presented in Fig. 1a where

the same methods also exhibited the lowest precision for counties with these

characteristics. LIN, SFT, EXP, and AV7 show counties with declining populations

over the base period tend to get under-projected while those with growing

populations are generally projected too high for the target year. The CON technique

reveals the opposite pattern. The same relationships appear when bias is measured

using the Median ALPE (Fig. 2b). Any differences between the measures once

again relate to the level of error and not the overall pattern, and in general both

measures provide very similar results.

Whereas the MALPE and Median ALPE focus on the magnitude of bias, the

percent positive measure (Fig. 2c) simply records what proportion of all projection

errors are positive. Percent positive (or negative) thus highlights a different aspect of

bias. The data in Fig. 2c demonstrate that the general relationship between forecast

bias and base period population change remains the same for all methods. However,

some projection techniques appear differently biased compared to the evaluation that

used the MALPE or Median ALPE. For example, CON exhibited only modest

amounts of bias according to Fig. 2a, b. Yet, as Fig. 2c shows, the vast majority of

counties in growth categories as moderate as 5–10% positive change over the base

period tend to get under-projected by this method. Thus, while CON avoids large

errors, the method is quite biased in that it under-projects a significant proportion of

all counties with particular growth regimes. This serves as a reminder that one should

look at more than one summary measure of error before making a determination

regarding the choice of the appropriate projection technique for the task at hand.

Discussion and conclusion

What should we conclude from the above analysis? Does the MAPE really overstate

forecast error, as Tayman and Swanson (1999) and others suggest? Are the

perceived problems with the MAPE grave enough to consider it invalid for

evaluating population projections? And, if so, which measures of projection

accuracy should be used instead?

This analysis of county population projections compared the performance of

three summary measures of error with respect to precision and bias. Using a

database that covered the entire twentieth century and all counties in the continental

US for which comparable data were available, the study provided a comprehensive

look at the performance of projection evaluation measures for a wide range of

projection methods. The study confirmed that the commonly used MAPE can be

problematic in that it has a tendency to go to extremes in the presence of outliers.

Compared to the Median APE and an M-Estimator, the MAPEs were on average

higher by about 30–40% for most methods and projection horizons. With respect to

bias, the MALPE also sometimes yielded patterns that diverged from alternative

measures. The differences were most pronounced for the EXP method, which can

produce truly astronomical projections especially for counties with small popula-

tions and for long forecast horizons, resulting in occasionally greatly inflated mean-

based summary measures of forecast error.
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However, it can be argued that although the extremely elevated MAPEs

sometimes limit the measure’s usefulness for comparative purposes, they also

expose problems with particular projection models.6 While it is true that the EXP

method generally produced quite competitive population projections—indeed for

some county growth categories projections obtained with EXP were among the most

precise and least biased of any projection technique—for counties with certain

characteristics the method is completely unsuited, a fact that almost escapes

detection if only the robust measures are used. In that sense, the MAPE (or the

MALPE) does not really overstate error—after all, the error is present in the

projections—but the mean-based measure does contain conceptual features that

make its application for comparable purposes problematic, because a few outliers

can obscure the potentially high accuracy and low bias of most other units in the

analysis. Thus, when extreme outliers are present, the MAPE should not be used, or

should be supplemented with other evaluative measures, unless forecasters want to

perpetuate the perception that population projections are inaccurate and untrust-

worthy (Swanson & Tayman, 1995; Tayman & Swanson, 1996).

Previous studies of forecast accuracy at the sub-state level were limited by

investigating only a restricted geographic area and/or a few decades of data. Having

broad temporal and geographic scope, and using a wide range of projection

techniques, the present analysis extended those earlier evaluations and, in addition,

compared the performance of three different summary measures of error. This

facilitated making generalizations about the findings, but because of its scope the

study also involved projection scenarios that are rare in a real world setting, and

which may have influenced the comparison of the performance of the error

measures.

The paper concludes by evaluating projection accuracy for one set of actual 20-

year projections for counties for the State of Florida. Figure 3 shows the absolute

percent errors of the medium series population projections for Florida counties,

produced by the Bureau of Economic and Business Research at the University of

Florida in 1981 for the target year 2000.7 The Florida projections involve a

combination of cohort-component methods at the state level and ratio-share

procedures at the county level (Smith & Mandell, 1981). In addition to the APEs for

all 67 Florida counties, Fig. 3 also presents the MAPE, the Median APE, and

Tukey’s biweight as summary measures of projection precision.

As was true for the various trend extrapolation techniques for the nation

described above, the Florida projections show a MAPE that exceeds both robust

error measures, though the differences are less pronounced. With respect to bias the

6 This analysis focused on trend extrapolation techniques, because the extensive temporal and geographic

scope precluded the use of alternative projection models. While extreme outliers are particularly apparent

with the exponential technique, cohort-component and other more complex projection methods are not

immune to them. After all, if an area grew very rapidly over the base period, this would be reflected

somewhere, e.g., the migration rates or structural variables used in more complex projection models.

Thus, the substantive findings reported here with respect to the performance of the various summary

measures of error apply to cohort-component and structural models as well.
7 The 1981 series was produced before many of the detailed data from 1980 Census became available

(e.g., the projections use 1965–1970 migration data). They were chosen here because they provide the

only 20-year projection horizon that can be compared to actual census data.
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differences are smaller still; here a MALPE of �12.87 contrasts with a Median

ALPE of �11.56 and an M-estimator of �11.53 (see Fig. 4). For both precision and

bias, the two robust measures of error are very similar. This demonstrates that even

a sample as small as 67 counties does not necessarily preclude the use of a median-

based summary measure of error. When looking at the pattern of individual APEs

shown in Fig. 3, one notices that the distribution is fairly smooth up to the six

counties with the highest error values, and only two counties are real outliers.

Figure 3 also shows that a relatively small number of counties (less than 10%) are

mainly responsible for the MAPE exceeding the robust error measures. Even though

none of the six counties that were off by more than 30% did take on extreme values,

they nevertheless pulled the MAPE upwards.

Knowing the distribution of the individual county APEs and ALPEs, which of the

error measures represents the ‘‘true’’ overall accuracy of the projections? This is

hard to determine, because there does not exist a ‘‘true’’ summary measure of

forecast error. Rather, each error measure reflects a different ‘‘truth.’’ There is no

question that the counties whose projections for the year 2000 differed from Census

2000 by more than 30% are primarily responsible for the MAPE exceeding the

Median APE and Tukey’s biweight. Yet at the same time, the error is real, and

should be reflected in the summary measure. The Median does not account for the

large errors and neither, it appears, does the M-estimator.8 In that sense, just as the

MAPE can be accused of overstating forecast error, the robust alternative measures

can be charged for understating it.
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Fig. 3 APEs, Florida county projections for 2000, produced July, 1981 (MAPE = 15.47, Median
APE = 12.76, Tukey’s biweight = 12.52)

8 The four M-estimators vary in their objective functions and tuning constants, resulting in different

weighting patterns and, consequently, their resistance to outliers. The Huber’s and Hampel’s M-

estimators are less resistant to outlying observations than are Tukey’s and Andrews’. Using Huber’s

would have produced an absolute percent error value of 13.37 whereas Hampel’s M-estimator shows a

value of 13.29. Both are now higher than the Median APE, but still lower than the MAPE.
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The findings of this study lead to the realization that it might be worthwhile to

take a step back from striving to find the most refined summary measure of forecast

error. There are situations in which a particular measure is clearly unsuited for the

task at hand (e.g., the MAPE when dealing with extreme outliers, and the Median

APE when dealing with very small samples), but in practice—for typical national,

state, and county projections for short to medium horizons produced with standard

techniques—most summary measures of error lead to similar conclusions. Except

for situations where extreme outliers rendered the MAPE and MALPE meaningless,

and which are rare in real world applications, there was not a single instance in this

analysis where using an alternative summary measure of error would have led to a

fundamentally different evaluation of the projections. And where there were

differences, it was not at all clear that the values and patterns provided by the robust

measures were necessarily more correct than those obtained with the MAPE and

MALPE.

Therefore, for practical purposes, a more fruitful approach might lie in

complementing an evaluation of projections with additional procedures that go

beyond the various refinements of the MAPE and the MALPE. Figure 2c suggested

one possible alternative. The proportion of all projection errors that are positive

provides a different look at bias by discounting the magnitude of the errors and

focusing instead on the overall tendency of the projections to come out too high or

low. As was shown, some projection techniques were biased in a different way than

was apparent when looking at either the MALPE or its robust counterparts. Another

alternative is to investigate the actual distribution of the projection errors in addition

to calculating summary measures or error. Looking at Fig. 3, different observers

would probably come away with more than one conclusion about which of the three

summary measures best represents the underlying distribution of projection errors.

But whether one leans toward the MAPE, the Median APE, or another error
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Fig. 4 ALPEs, Florida county projections for 2000, produced July, 1981 (MALPE = �12.87, Median
ALPE = �11.56, Tukey’s biweight = �11.53)
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measure, the pattern displayed in Fig. 3 provides an additional perspective that helps

to interpret a set of population projections that no single summary measure can

offer.

Many other procedures for determining forecast accuracy are possible. Tayman

et al. (1998) looked at the variability of forecast error by means of the standard

deviation of the MAPE and the MALPE, in addition to using the coefficient of

variation (or CV, calculated as the ratio of the standard deviation over the mean,

multiplied by 100). They found that as the size of the base population increased, so

did the stability of forecast bias. A similar approach could be applied for deciding

among projection methods that show otherwise comparable levels of forecast error.

To give an example from the dataset used in this study, for 30-year projection

horizons and 20-year base periods the following techniques are the most precise:

AV7, AV5, and CON with Median APEs of about 22, and LIN, MLN, EXP, and

AV3 with Median APEs of about 23–24 (see Table 3). Of these, CON exhibits the

lowest coefficient of variation (9.6) and EXP the highest (15.6), with the other four

techniques having CVs of about 13 (data not shown). Yet while it appears that CON

might be the best performer because its projection errors are the least variable, this

technique also exhibits the greatest bias (�9.8) whereas EXP has the lowest (�1.8).

This further demonstrates that decisions about model choice should be made by

carefully evaluating a whole range of indicators.

Finally, it needs to be reiterated that precision and bias, however measured, are

not the only criteria by which forecasts should be judged. Timeliness, cost savings,

ease of interpretation, ease of use, and more generally the ‘‘utility’’ of the

projections are often important considerations as well (Swanson & Tayman, 1995;

Tayman, 1996; Tayman & Swanson, 1996; Yokum & Armstrong, 1995).

Ahlburg (1992, p. 99), in a commentary on error measures, asked whether the

choice of an error measure to identify the most accurate forecasting method was a

question of personal taste. He suggested that this appeared to be the case and

pointed out that in a survey of various papers dealing with population forecasts none

of the authors justified their choice of error measure. This paper does not advocate

that it does not matter which summary measure of forecast accuracy is chosen when

evaluating a set population projections. There often exist valid theoretical and/or

practical concerns against a particular measure and, when the circumstances warrant

it, error measures that are problematic should not be used. However, this study

found that for most practical purposes simple and easy to understand measures such

as the MAPE and the Median APE offer all the relevant information a summary

measure of error can provide, and that additional evaluation procedures that go

beyond a single criterion should also be considered. Doing so will lead to a more

thorough understanding of the underlying structure of the projections and, it is to be

hoped, to better projections in the future.
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